One hundred and one monarch genomes reveal surprising history of this longdistant

first_imgEach fall, when the first migrating monarch butterflies fluttered past his 11th-floor window in Washington, D.C., Science’s recently retired earth science writer, Dick Kerr, would call us other writers and editors in to watch these harbingers of the coming cold wing their way southward. He’ll appreciate this advance. By sequencing 101 monarch genomes, biologists have rewritten the evolutionary history of the species, discovering what makes the monarch’s wings orange and its muscles well suited for the long flight to boot.”It is a wonderfully complete application of genomics to elucidating a well-known puzzle of natural history,” says Lawrence Gilbert, an evolutionary ecologist at the University of Texas, Austin. “It explains the pattern of migratory and sedentary populations on the globe and probably refines hypotheses on many aspects of monarch biology.”The fall journey takes the monarch, Danaus plexippus, thousands of kilometers south to the mountains of Mexico for the winter. Come spring, the butterflies begin their trek northward, following the blooming of the caterpillar’s host plant, milkweed. Adults stop and reproduce when they encounter the plant; then the next generation heads north as the season progresses to find more milkweed, so it can take several generations for the insects to make it back to Washington, D.C., and beyond to Canada. Females lay eggs on milkweed and their caterpillars feed on this plant, acquiring compounds that make the butterflies toxic to potential predators, as they warn with the striking orange and black pattern on their wings. Sign up for our daily newsletter Get more great content like this delivered right to you! Country Country * Afghanistan Aland Islands Albania Algeria Andorra Angola Anguilla Antarctica Antigua and Barbuda Argentina Armenia Aruba Australia Austria Azerbaijan Bahamas Bahrain Bangladesh Barbados Belarus Belgium Belize Benin Bermuda Bhutan Bolivia, Plurinational State of Bonaire, Sint Eustatius and Saba Bosnia and Herzegovina Botswana Bouvet Island Brazil British Indian Ocean Territory Brunei Darussalam Bulgaria Burkina Faso Burundi Cambodia Cameroon Canada Cape Verde Cayman Islands Central African Republic Chad Chile China Christmas Island Cocos (Keeling) Islands Colombia Comoros Congo Congo, the Democratic Republic of the Cook Islands Costa Rica Cote d’Ivoire Croatia Cuba Curaçao Cyprus Czech Republic Denmark Djibouti Dominica Dominican Republic Ecuador Egypt El Salvador Equatorial Guinea Eritrea Estonia Ethiopia Falkland Islands (Malvinas) Faroe Islands Fiji Finland France French Guiana French Polynesia French Southern Territories Gabon Gambia Georgia Germany Ghana Gibraltar Greece Greenland Grenada Guadeloupe Guatemala Guernsey Guinea Guinea-Bissau Guyana Haiti Heard Island and McDonald Islands Holy See (Vatican City State) Honduras Hungary Iceland India Indonesia Iran, Islamic Republic of Iraq Ireland Isle of Man Israel Italy Jamaica Japan Jersey Jordan Kazakhstan Kenya Kiribati Korea, Democratic People’s Republic of Korea, Republic of Kuwait Kyrgyzstan Lao People’s Democratic Republic Latvia Lebanon Lesotho Liberia Libyan Arab Jamahiriya Liechtenstein Lithuania Luxembourg Macao Macedonia, the former Yugoslav Republic of Madagascar Malawi Malaysia Maldives Mali Malta Martinique Mauritania Mauritius Mayotte Mexico Moldova, Republic of Monaco Mongolia Montenegro Montserrat Morocco Mozambique Myanmar Namibia Nauru Nepal Netherlands New Caledonia New Zealand Nicaragua Niger Nigeria Niue Norfolk Island Norway Oman Pakistan Palestine Panama Papua New Guinea Paraguay Peru Philippines Pitcairn Poland Portugal Qatar Reunion Romania Russian Federation Rwanda Saint Barthélemy Saint Helena, Ascension and Tristan da Cunha Saint Kitts and Nevis Saint Lucia Saint Martin (French part) Saint Pierre and Miquelon Saint Vincent and the Grenadines Samoa San Marino Sao Tome and Principe Saudi Arabia Senegal Serbia Seychelles Sierra Leone Singapore Sint Maarten (Dutch part) Slovakia Slovenia Solomon Islands Somalia South Africa South Georgia and the South Sandwich Islands South Sudan Spain Sri Lanka Sudan Suriname Svalbard and Jan Mayen Swaziland Sweden Switzerland Syrian Arab Republic Taiwan Tajikistan Tanzania, United Republic of Thailand Timor-Leste Togo Tokelau Tonga Trinidad and Tobago Tunisia Turkey Turkmenistan Turks and Caicos Islands Tuvalu Uganda Ukraine United Arab Emirates United Kingdom United States Uruguay Uzbekistan Vanuatu Venezuela, Bolivarian Republic of Vietnam Virgin Islands, British Wallis and Futuna Western Sahara Yemen Zambia Zimbabwe Many of the monarch’s close relatives call the tropics home and don’t migrate, so evolutionary biologists had proposed that the North American migrants descended from nonmigratory South or Central American ancestors, much as temperate songbirds originated in the tropics, spreading northward to find food but forced to return south each winter because of the cold weather. Not so, says Marcus Kronforst, an evolutionary biologist at the University of Chicago in Illinois. “The data said a totally different thing.”Kronforst and his colleagues had previously studied another butterfly, Heliconius, and found the key gene involved in determining the color patterns of the various species in this group. So when the monarch genome was first sequenced 2 years ago, he wondered whether there might be a single gene largely responsible for migration behavior in the monarchs.Joining forces with monarch experts, Kronforst obtained DNA from 92 monarchs and nine other closely related butterflies. The samples came from different parts of North America, from places in South and Central America where the local monarchs stayed put all year round, and from elsewhere around the world. Shuai Zhan, now at the Shanghai Institutes for Biological Sciences in China, sequenced all of these genomes. He and his colleagues grouped the genomes by how similar they were to build a family tree. That tree revealed that, contrary to expectations, all the monarchs arose from a population in the southern United States or northern Mexico. The species expanded in three waves, one south into South and Central America, one east across the Atlantic, and a third west across the Pacific. Butterflies in those waves settled down and ceased migrating. Kronforst, Zhan, and their colleagues matched up the DNA from migratory and nonmigratory populations. About 500 genes were different, many of them subtly so. But one muscle gene, called collagen IV alpha-1, stood out sharply. Many other creatures share the gene. Fruit flies with mutations in it have atrophied muscles, and in people, similar mutations lead to frequent muscle cramps. The researchers expected that to make their long trips North American monarchs would need a lot more collagen than their South American counterparts and that the gene would therefore be more active. Instead, the gene was less active in the migrants, they report online today in Nature. Somehow, less collagen in the migrants’ flight muscles made them more efficient.”It’s the first genetic change that’s been shown to be associated with migration,” says Richard Ffrench-Constant, an entomologist at the University of Exeter in the United Kingdom, who was not involved with the work. But the study is “just a first step,” he adds. These are the sorts of genes “that equip [the monarchs] to migrate, but not the genes that make them fly.” He hopes that next the researchers will find genes involved in turning on the migration behavior.Kronforst and Zahn’s team also sequenced genomes from Hawaiian monarchs, which come in white and orange forms. From breeding experiments, other researchers learned that a single gene was responsible for the color loss. Zahn and Kronforst expected that this gene would be involved in pigment-generating pathways. But instead, their analysis shows it was a gene that codes for myosin, a protein essential for muscle contraction. The butterfly myosin gene resembles a myosin gene that is mutated in a mouse strain that has light instead of dark fur. In the mouse, this myosin helps transport pigments into the hair, so Kronforst thinks the white morph’s myosin may fail to transport orange pigment into the wing scales.Ffrench-Constant says the data are compelling. But he wonders how well the new evolutionary scenario will hold up once more monarch relatives—many of them tropical and nonmigratory—are sequenced. The addition of those genomes to the monarch extended family tree may lead to another revision of this butterfly’s history. Nevertheless, the genetic analysis should reinforce interest in conserving migrating monarchs, whose numbers have dwindled in recent years. “Based on the paper’s findings,” Gilbert says, “sedentary populations cannot easily restore migrating monarchs once the latter are lost.”center_img Email Click to view the privacy policy. Required fields are indicated by an asterisk (*)last_img

Leave a Reply

Your email address will not be published. Required fields are marked *